A socket programming interface provides the routines required for interprocess communication between applications, either on the local system or spread in a distributed, TCP/IP based network environment. Once a peer-to-peer connection is established, a socket descriptor is used to uniquely identify the connection. The socket descriptor itself is a task specific numerical value.
Normally, a server runs on a specific computer and has a socket that is bound to a specific port number. The server just waits, listening to the socket for a client to make a connection request.
On the client-side: The client knows the hostname of the machine on which the server is running and the port number on which the server is listening. To make a connection request, the client tries to rendezvous with the server on the server's machine and port. The client also needs to identify itself to the server so it binds to a local port number that it will use during this connection. This is usually assigned by the system.
If everything goes well, the server accepts the connection. Upon acceptance, the server gets a new socket bound to the same local port and also has its remote endpoint set to the address and port of the client. It needs a new socket so that it can continue to listen to the original socket for connection requests while tending to the needs of the connected client.
On the client side, if the connection is accepted, a socket is successfully created and the client can use the socket to communicate with the server.
The client and server can now communicate by writing to or reading from their sockets.
ReplyDeleteIt's very nice of you to share your knowledge through posts. I love to read stories about your experiences. They're very useful and interesting. I am excited to read the next posts. I'm so grateful for all that you've done. Keep plugging. Many viewers like me fancy your writing. Thank you for sharing precious information with us
tcpip model