Let's create truth tables for the given logical expressions:
i) \( p \rightarrow (\neg r \land q) \land (\neg p \lor r) \):
\[ \begin{array}{cccccccc} p & q & r & \neg r & \neg p & \neg r \land q & \neg p \lor r & (\neg r \land q) \land (\neg p \lor r) & p \rightarrow (\neg r \land q) \land (\neg p \lor r) \\ \hline
T & T & T & F & F & F & T & F & F \\
T & T & F & T & F & T & T & T & T \\
T & F & T & F & F & F & T & F & F \\
T & F & F & T & F & F & T & F & F \\
F & T & T & F & T & F & T & F & T \\
F & T & F & T & T & T & T & T & T \\
F & F & T & F & T & F & T & F & T \\
F & F & F & T & T & F & T & F & T \\ \end{array} \]
ii) \( p \rightarrow (\neg r \lor \neg q) \lor (p \land \neg r) \):
\[ \begin{array}{cccccccc} p & q & r & \neg r & \neg q & \neg r \lor \neg q & p \land \neg r & (\neg r \lor \neg q) \lor (p \land \neg r) & p \rightarrow (\neg r \lor \neg q) \lor (p \land \neg r) \\ \hline
T & T & T & F & F & F & F & F & T \\
T & T & F & T & F & T & T & T & T \\
T & F & T & F & T & T & F & T & T \\
T & F & F & T & T & T & T & T & T \\
F & T & T & F & F & F & F & F & T \\
F & T & F & T & F & T & F & T & T \\
F & F & T & F & T & T & F & T & T \\
F & F & F & T & T & T & F & T & T \\ \end{array} \]
In both truth tables, \( T \) represents "True," and \( F \) represents "False." The final column represents the truth value of the respective logical expressions.
0 टिप्पणियाँ:
Post a Comment