A tautology is a compound statement that is always true, regardless of the truth values of its individual components. Let's analyze the statement \( (P \rightarrow Q) \lor (\neg P) \) to determine whether it is a tautology.

The truth table for this statement is as follows:

\[

\begin{array}{cccccc}

P & Q & \neg P & (P \rightarrow Q) & (\neg P) & (P \rightarrow Q) \lor (\neg P) \\

\hline

T & T & F & T & F & T \\

T & F & F & F & F & F \\

F & T & T & T & T & T \\

F & F & T & T & T & T \\

\end{array}

\]

In the truth table, the column \( (P \rightarrow Q) \lor (\neg P) \) has all "T" values. Therefore, the given statement is a tautology.

## 0 เคिเคช्เคชเคฃिเคฏाँ:

## Post a Comment