(c) Simplify the following function using K-map: F(A, B, C, D) = Σ (1, 3, 4, 7, 11, 13) Draw the circuit for the resultant function using NAND gates.

, , No Comments

(c) Simplification using Karnaugh Map (K-map):


The given function is \(F(A, B, C, D) = \Sigma (1, 3, 4, 7, 11, 13)\).


Let's construct the K-map:


```

\[

\begin{array}{cccc|c}

  AB\textbackslash CD & 00 & 01 & 11 & 10 \\

  \hline

  00 & 0 & 0 & - & 1 \\

  01 & - & 1 & 1 & - \\

\end{array}

\]

```


Groups:

- Group 1: \(D'C' = 1\)

- Group 2: \(BC = 1\)

- Group 3: \(AD = 1\)


The simplified expression is \(F(A, B, C, D) = D'C' + BC + AD\).


 Circuit using NAND Gates:


The NAND gate implementation for the simplified expression is as follows:


- \(D_1 = \overline{D'}\)

- \(C_1 = \overline{C'}\)

- \(C_2 = \overline{B}\)

- \(A_1 = \overline{A}\)


The circuit:


```

       +-------+

       |       |

A ----( NAND )--- D1 ---- F

       |       |

B ----( NAND )--- C2

       |       |

C ----( NAND )--- C1

       |       |

D ----( NAND )--- A1

       |       |

       +-------+

```


This circuit uses NAND gates to implement the simplified Boolean expression \(F(A, B, C, D) = D'C' + BC + AD\).

0 टिप्पणियाँ:

Post a Comment