(c) Simplification using Karnaugh Map (K-map):
The given function is \(F(A, B, C, D) = \Sigma (1, 3, 4, 7, 11, 13)\).
Let's construct the K-map:
```
\[
\begin{array}{cccc|c}
AB\textbackslash CD & 00 & 01 & 11 & 10 \\
\hline
00 & 0 & 0 & - & 1 \\
01 & - & 1 & 1 & - \\
\end{array}
\]
```
Groups:
- Group 1: \(D'C' = 1\)
- Group 2: \(BC = 1\)
- Group 3: \(AD = 1\)
The simplified expression is \(F(A, B, C, D) = D'C' + BC + AD\).
Circuit using NAND Gates:
The NAND gate implementation for the simplified expression is as follows:
- \(D_1 = \overline{D'}\)
- \(C_1 = \overline{C'}\)
- \(C_2 = \overline{B}\)
- \(A_1 = \overline{A}\)
The circuit:
```
+-------+
| |
A ----( NAND )--- D1 ---- F
| |
B ----( NAND )--- C2
| |
C ----( NAND )--- C1
| |
D ----( NAND )--- A1
| |
+-------+
```
This circuit uses NAND gates to implement the simplified Boolean expression \(F(A, B, C, D) = D'C' + BC + AD\).
0 टिप्पणियाँ:
Post a Comment