Evaluate : ∫x 2√5x − 3dx

, , No Comments

 To evaluate the integral \( \int x \sqrt{5x - 3} \, dx \), we can use u-substitution.


Let \( u = 5x - 3 \), then \( du/dx = 5 \) or \( dx = du/5 \).


Now, substitute \( u \) and \( dx \) into the integral:


\[ \int x \sqrt{5x - 3} \, dx = \int x \sqrt{u} \, \frac{du}{5} \]


Now, we can pull the constant (1/5) out of the integral:


\[ \frac{1}{5} \int x \sqrt{u} \, du \]


Next, we can further simplify by expressing \( x \) in terms of \( u \) using \( u = 5x - 3 \), which gives \( x = \frac{u + 3}{5} \).


Substitute this into the integral:


\[ \frac{1}{5} \int \frac{u + 3}{5} \sqrt{u} \, du \]


Now, distribute the \( \frac{1}{5} \) into the expression:


\[ \frac{1}{25} \int (u + 3) \sqrt{u} \, du \]


Expand the expression:


\[ \frac{1}{25} \int (u^{3/2} + 3u^{1/2}) \, du \]


Now, integrate each term separately:


\[ \frac{1}{25} \left( \frac{2}{5}u^{5/2} + 2u^{3/2} \right) + C \]


Finally, substitute back \( u = 5x - 3 \) to get the final result:


\[ \frac{1}{25} \left( \frac{2}{5}(5x - 3)^{5/2} + 2(5x - 3)^{3/2} \right) + C \]


where \( C \) is the constant of integration.

0 टिप्पणियाँ:

Post a Comment